EXPERIMENT P1: CHARACTERISTICS OF THREE-PHASE GENERATOR

Related course: KIE3009 (Energy Conversion and High Voltage Transmission)

OBJECTIVES:

To investigate the characteristics of a three-phase generator

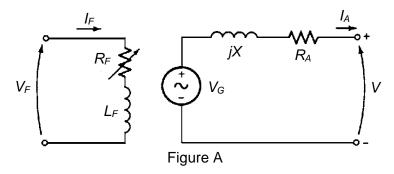
EQUIPMENT:

Motor-generator set, voltmeter, ammeter, DC power supplies, 3-phase resistive load

INSTRUCTIONS:

- 1. Record all your results and observations in a log book / paper
- 2. Follow the demonstrator's instructions throughout the experiment

REFERENCE(S):


Refer to the main references of KIE3009

TESTS:

Test 1: Open-Circuit Test Test 2: Short-Circuit Test Test 3: Load Test

INTRODUCTION:

Generator converts mechanical to electrical energy. Generators are driven by steam turbine, hydro turbines or gas turbines. Stator is a stationary part where the armature windings are, while rotor is a rotating part. The equivalent circuit of a generator is shown in Figure A, where V_G is the generated e.m.f., I_A is the load current, V is the terminal voltage, X is the generator reactance, R_A is the armature resistance, V_F is the field voltage, I_F is the field current, R_F is the field resistance and L_F is the field inductance.

Neglecting R_A , the equation which relates parameters in Figure A, where $\delta = \text{load/power}$ angle and $\theta = \text{angle between } V$ and I_A is $V_G \angle \delta = V \angle 0^\circ + jXI_A \angle \theta$.

TEST 1: Open-Circuit Test

- 1. This test consists of 2 sets of circuit connection, the generator and motor circuits. On the generator circuit, connect a voltmeter between U1 and V1 of the generator output, as shown in Figure 1. Do not change any connection in the motor circuit.
- 2. Turn ON all DC power supplies. Adjust the variable DC power supply that is connected to the motor so that the generator speed N achieves 1500 rpm. Adjust the variable DC power supply that is connected to the generator so that the field current I_F achieves the values according to Table 1. Record the generated voltage V_G (using

voltmeter) in Table 1. The field current I_F can be read from the ammeter. The speed can be read from the control unit.

- 3. Repeat step 2 but with decreasing field current I_F and fill in Table 1. The speed of the generator has to be fixed at 1500 rpm (rated speed).
- 4. Set the field current I_F to 0.3A and maintain it throughout this test. Set the generator speed N according to the values shown in Table 2 and record the generated voltage V_G (using voltmeter). I_F and N can be adjusted using the variable DC power supplies that are connected to the generator and motor.

T-1-1- 4

				I able	1					
Generator speed N (rpm)		1500								
Field current I_F (A)	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
Generated voltage V_G (V) [for increasing I_F]										
Generated voltage V_G (V)										
[for decreasing I_F]										

Table 2										
Field Current I_F (A)		0.3								
Generator speed N (rpm)	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500
Generated voltage V_G (V)										

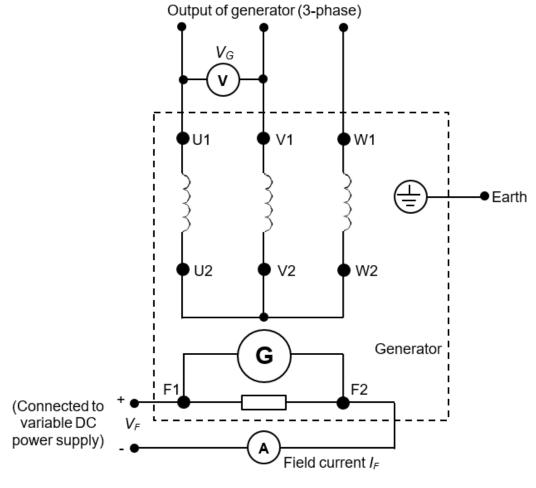
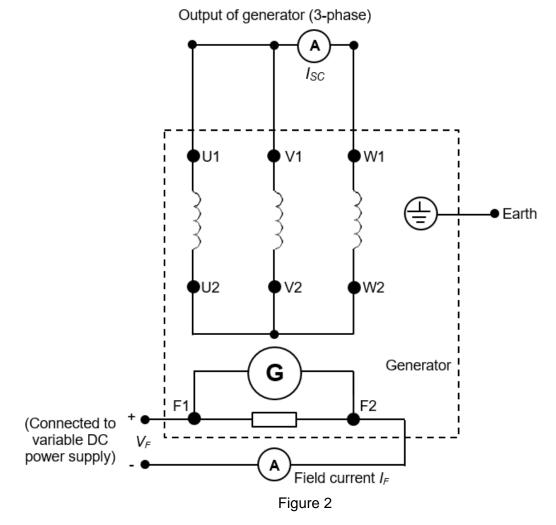


Figure 1

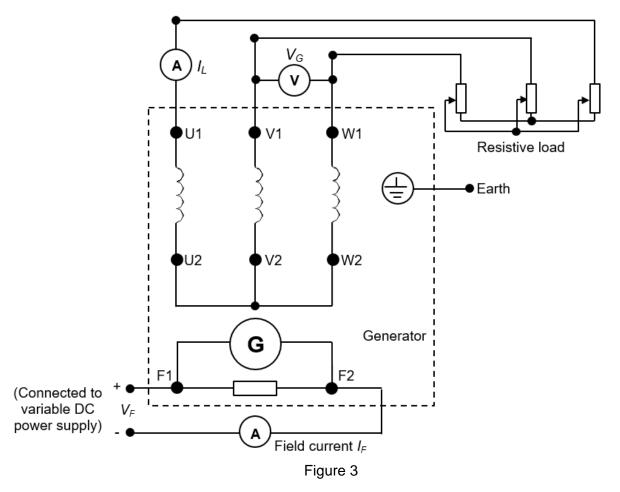
Dept. of Electrical Eng., University of Malaya


QUESTION: Plot V_G against I_F (increasing and decreasing) from Table 1 in one graph. Then, plot V_G against *N* in another graph. Explain the shape of both graphs.

TEST 2: Short-Circuit Test

- 1. Switch OFF all DC power supplies. Remove the voltmeter between U1 and V1. Short circuit the generator output by connecting a wire between U1 and V1 and connect an ammeter between V1 and W1, as shown in Figure 2.
- 2. Switch ON all DC power supplies. Adjust the variable DC power supplies that are connected to the generator and motor so that the generator speed *N* achieves 1500 rpm and the field current I_F achieves the values according to Table 3. Record the short-circuit current I_{SC} from the ammeter in Table 3.
- 3. Repeat step 2 but fix the generator speed *N* to 1200 rpm. Record the results.
- 4. Switch OFF all DC power supplies. Remove the wire between U1 and V1 and remove the ammeter between V1 and W1.

T-1-1- 0


I able 3											
Generator speed N (rpm)	1500										
Field current, I_F (A)	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20	0.22
Short-circuit current I _{sc} (A)											

QUESTION: Plot I_{sc} against I_F from Table 3 for both *N*. Explain the graph.

TEST 3: Load Test

- 1. Switch OFF all DC power supplies. As shown in Figure 3, connect a voltmeter between V1 and W1. Connect a 3-phase resistive load to the output of the generator and connect an ammeter between U1 and the resistive load.
- 2. Adjust the resistive load to 100% (maximum) and switch ON all DC power supplies.
- 3. Adjust the variable DC power supplies that are connected to the generator and motor so that the generator speed *N* achieves 1200 rpm and the field current I_F achieves 0.3 A. Record the generated voltage V_G (using voltmeter) for each load current I_L in Table 4. The load current can be changed by tuning the resistive load. Make sure that the speed *N* and field current I_F remain constant.

Та	bl	е	4
----	----	---	---

Generator speed N (rpm)	1200					1200					
Field current I_F (A)	0.3					0.25					
Load current I_L (A)	0.3	0.25	0.2	0.15	0.1	0.3	0.25	0.2	0.15	0.1	
Generated voltage V _G (V)											
Apparent power											
$S = \sqrt{3}V_G I_L$ (VA)											

QUESTIONS:

- 1. From Table 4, plot S against I_L for both I_F in one graph. Explain the graph.
- 2. What are the effects of load change on the generated voltage?

END OF EXPERIMENT